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Abstract

The vascularization of smart materials with self-healing functionality requires the distribution of fluids continuously and uniformly
throughout the material volume. This paper shows how to configure the architecture such that the single stream that flows through the
vascularized body has access to every volume element. The configuration is two trees matched canopy to canopy, and has freedom to
morph in several directions: channel orientations (diagonal vs. orthogonal), channel sizes, and system sizes. Tree–tree configurations pro-
vide greater access when diagonal channels are combined with orthogonal channels, and when multiple and optimized channel sizes are
used.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A new direction in the design of smart materials is the
invention of structural composites with distributed (encap-
sulated) healing fluids such as epoxy [1]. When the material
is overworked and it develops tiny cracks, the embedded
capsules break, and the healing and curing agents fill and
fuse the cracks. It was demonstrated that after a certain
healing time the composite regains its mechanical strength
properties.

The filling of cracks with fluid from microcapsules is a
one-time healing process. The future development of self-
healing composites calls for the use of vascularization with
healing agents, so that the entire volume of the structural
composite is protected against volumetric cracking. Several
cracks may form randomly and at different sites simulta-
neously and repeatedly. One-time healing is not the solu-
tion. Needed is a network that is configured and
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distributed optimally through the composite so that it pro-
vides healing agent where and when self-healing is needed.

The manufacturability of such vascularization has been
demonstrated [2]: three-dimensional architectures can be
constructed by direct-write assembly of fugitive organic inks.
The resulting grids have smooth cylindrical channels with
defined connectivity and diameters in the range 30–300 lm.

The latest work on the vascularization of smart materi-
als focuses on the fundamental problem of how to provide
fluid to every point in a solid slab in which cracks may
occur. The approach that was chosen is based on construc-
tal theory [3,4], which regards the generation of flow con-
figuration as a natural phenomenon that evolves in time
toward easier flowing configurations. All flow systems in
nature have configuration (i.e., geometry, architecture,
drawing). Constructal theory places the occurrence of flow
configuration on the basis of a physics principle (the con-
structal law): ‘‘For a flow system to persist in time (to sur-
vive) it must evolve in such a way that it provides easier
and easier access to the currents that flow through it”.
The constructal law has become an addition to thermody-
namics: the thermodynamics of flow systems with configu-
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Nomenclature

a ratio, Eq. (15)
A area, m2

C factor, Eq. (3)
d elemental length scale, m
Di channel diameter, m
H height of rectangular domain, m, Fig. 1
L length rectangular domain, m, Fig. 1
Li channel length, m
_m mass flow rate, kg s�1

N number of elemental sequences d � d in one
direction

R flow resistance, Fig. 5
Sv svelteness number, Eq. (2)
V total volume, m3

Vc total flow volume, m3

x, y variables, m2, Eq. (15)

Greek symbols

DP pressure difference, Pa
m kinematic viscosity, m2 s�1

/ porosity
w non-dimensional global flow resistance, Eq. (14)

Subscripts

i channel rank
c channel
min minimum
opt optimum

Fig. 1. Trees matched canopy to canopy on square flow domains with
square elements (d � d), and channels with one diameter (D): (a) diagonal
channels, (b) orthogonal channels.
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ration [5]. The progress in this new domain was reviewed
most recently in Ref. [6].

Constructal flow architectures are a fast growing body
of work that has two main thrusts. One relies on the con-
structal law to predict and explain the occurrence of natu-
ral flow patterns in animate and inanimate systems (e.g.,
Refs. [6–9]). The other direction is the use of the construc-
tal law as a scientific principle in engineering design (e.g.,
Refs. [10–24]). This activity of ‘‘design as science” forms
the subject of this article.

Special among the engineered flow architectures derived
from the constructal law are the tree-shaped (dendritic)
designs. They are invading technological domains in which
they were not used previously (e.g., electronics cooling, fuel
cells). The reason is that because of their multiple scales
and optimized (finite) complexity, tree flows offer greater
densities of heat and mass transfer. Tree-shaped flow con-
figurations offer maximum access between one point (inlet,
or outlet) and an infinite number of points (area, volume).
Many superimposed tree flows are accommodated by a
grid of channels, which resembles the grid of city traffic.

By using two trees matched canopy to canopy, it is possi-
ble to provide healing fluid to one or more sites where cracks
may develop. The crack length scale d is known and fixed.
Each crack site is modeled as a sphere of diameter d. The
composite material is a slab of thickness d. The tree networks
must be fine enough so that they touch all the cracks wher-
ever they may occur. The flow rate through the entire net-
work ð _mÞ is steady and much larger than the flow rate
needed to fill the cracks that may form. Consequently, the
flow through the network is modeled as steady and
incompressible.

The new concept explored in this paper is the use of
diagonal channels in architectures that consist of two trees
matched canopy to canopy (Fig. 1). The self-healing com-
posite is a slab with rectangular face: on it, the layout of the
flow is two-dimensional. This architecture was originally



ig. 2. Square domain with 3 � 3 elemental squares and channels with
ne diameter.
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proposed for cooling with orthogonal channels a rectangu-
lar domain [25], and it was since adopted for the develop-
ment of microscale flow structures [22,23,26].

2. Model

The modeling of the flow architectures described in this
paper is based on several assumptions, which are selected
such that the present results can be compared on the same
basis with the results of Ref. [27], where all the channels
were orthogonal. First, the volume fraction occupied by
all the channels is held fixed,

/ ¼ V c

V
¼ total channel volume

total volume
ð1Þ

It is further assumed that the svelteness of the network, Sv,
is greater than 10,

Sv ¼ ðHLÞ1=2

V 1=3
c

¼ external length scale

internal length scale
ð2Þ

As shown in Ref. [28], when Sv exceeds the order of 10, the
pressure losses are dominated by Poiseuille fluid friction
along the straight channels, and losses due to bends and
junctions are negligible. The svelteness Sv is a global prop-
erty of the flow architecture, and it plays an important role
in the evolution of the flow architecture toward the best or
near-best architecture (near the ‘‘equilibrium flow configu-
ration” [5]). The assumption that Sv > 10 is consistent with
the application of these designs to self-healing composites,
where channel diameters are expected to be in the 10–
100 lm range, with Reynolds numbers of order 1.

The flow in every channel is in the Poiseuille regime. The
pressure drop along a channel with length Li, diameter Di,
and mass flow rate _mi is

DP i ¼ C
_miLi

D4
i

ð3Þ

where m is the kinematic viscosity, and C is a constant fac-
tor, for example, C = 128m/p if the duct cross-section is
round. Eq. (3) continues to be valid for other cross-sec-
tional shapes (with slightly different values for C) provided
that Di is the hydraulic diameter of channel i, and that the
shape of the channel cross-section does not change from
one channel to the next. For example, if all the channels
have square cross-sections, then C = 12m.

We used this model in order to simulate flows in a large
number of configurations of channels, so that we were able
to optimize the configurations. The objective was to
uncover trends and to devise strategies that can be used
in future designs of tree-shaped vascularization. The work
was conducted systematically by focusing on the major fea-
tures of the design: diagonal vs. orthogonal channels, one
channel diameter vs. two or three channel diameters, com-
bined diagonal and orthogonal channels, and the effect of
changing the size and shape of the two-dimensional
domain occupied by the vascularization.
3. Diagonal and orthogonal channels with one diameter

Consider the square domain composed of 5 � 5 elemen-
tal squares in Fig. 1. Two types of trees matched canopy-
to-canopy are shown: (a) two trees with diagonal channels
and two peripheral orthogonal channels, and (b) two trees
with only orthogonal channels. Both types satisfy the key
requirement of vascularization of self-healing and self-cool-
ing, which is that the center of every elemental square must
be touched by at least one channel. This guarantees that all
the potential crack sites of length scale d have access to
healing fluid.

We illustrate the analysis by applying it to the simplest
case, which is shown in Fig. 2. There are only 3 � 3 elemen-
tal squares. For Fig. 2a, we calculate the total pressure
F
o



Table 1
Optimized designs with orthogonal and diagonal channels when the channels have only one diameter size

N � N DP
Cd _m

V c

d

� �2 DP b � DP a

DP b

DP
C _m

/2d3

Diagonal channels Orthogonal channels Diagonal channels Orthogonal channels

3 � 3 257.19 205.87 �0.249 3.175 2.542
4 � 4 904.43 765.45 �0.182 3.533 2.990
5 � 5 2368.7 2125.3 �0.115 3.789 3.400
6 � 6 5186.9 4914.5 �0.055 4.002 3.792
7 � 7 10,060 10,022 �0.004 4.189 4.174
8 � 8 17,866 18,621 �0.041 4.362 4.546
9 � 9 29,671 32,313 �0.082 4.522 4.925
10 � 10 46,743 53,233 �0.122 4.674 5.323

Fig. 3. The global flow resistances of the flow architectures shown in
Fig. 1a and b.
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drop across the entire flow structure by writing

DP ¼ DP 1 þ DP 6 þ DP 11

¼ C
_m1d=2

D4
þ _m623=2d

D4
þ _m11d=2

D4

 !
ð4Þ

The continuity of mass requires

_m ¼ _m1 ¼ _m2 þ _m6 þ _m8 ¼ _m4 þ _m6 þ _m10 ¼ _m11

_m2 ¼ _m3 þ _m5 ¼ _m4

_m8 ¼ _m7 þ _m9 ¼ _m10

ð5Þ

Because of symmetry, we also have

DP 6 ¼ DP 2 þ DP 3 þ DP 4 ¼ DP 2 þ DP 5 þ DP 4

¼ DP 8 þ DP 7 þ DP 10 ¼ DP 8 þ DP 9 þ DP 10 ð6Þ

The total channel volume constraint reads

V c ¼
p
4

D2ð9þ 25=2Þd ð7Þ

Combining Eqs. (4)–(7) we find that the total pressure drop
can be expressed non-dimensionally as

DP
Cd _m

V c

d

� �2

¼ 257:19 ð8Þ

The corresponding analysis of the 3 � 3 orthogonal config-
uration of Fig. 2b yields, in order,

DP ¼ DP 1 þ DP 2 þ DP 3 þ DP 7

¼ C
_m1d=2

D4
þ _m2d

D4
þ _m33d

D4
þ _m7d=2

D4

� �
ð9Þ

_m ¼ _m1 ¼ _m2 þ _m5 ¼ _m3 þ _m6 ¼ _m7

_m2 ¼ _m3 þ _m4 ð10Þ
_m6 ¼ _m4 þ _m5

DP 2 þ DP 3 ¼ DP 2 þ DP 4 þ DP 6 ¼ DP 5 þ DP 6 ð11Þ

V c ¼
p
4

D2 1

2
� 2þ 1 � 4þ 2 � 3

� �
d ð12Þ

DP
Cd _m

V c

d

� �2

¼ 205:87 ð13Þ

By comparing Eqs. (8) and (13), we see that the design of
Fig. 2b is superior to that of Fig. 2a, because its global flow
resistance is smaller by 24.9%. But in Table 1 the relative
difference of global flow resistance between the two designs
gradually decreases as the system size increases so that for
N > 7 the values of these resistances are reversed. This is a
promising result, which we pursued in greater detail in Sec-
tion 4. However, it is important to note that although both
designs (Fig. 2a and b) satisfy the requirement that chan-
nels must pass through the centers of all the elemental
squares, in Fig. 2a the triangular and trapezoidal loops
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are narrower than the loops visible in Fig. 2b. This means
that the circles inscribed in the loops of Fig. 2a have a
diameter that is smaller than the diameter (d) of the circle
inscribed in the rectangular loop of Fig. 2b. Said another
way, the loops of Fig. 2a are over designed.

In Table 1, we show the results for the architecture of
Fig. 1 on square domains N � N that increase in size all
the way to 10 � 10. The orthogonal design (b) is better
than the diagonal design (a) when N 6 7. Above N = 7,
the diagonal design is better. The relative difference
between the two is in the range of 25%. The data of Table
1 are plotted in Fig. 3, which shows the effect of global size:
the overall pressure drop increases roughly in proportion
to N4.32 and N4.61 for design (a) and design (b),
respectively.

Another way to non-dimensionalize the overall pressure
drop (by accounting for the N � N system size in the non-
dimensional group) is by constructing the group

w ¼ DP
C _m

/2d3 ð14Þ
Fig. 4. Square flow domains with channels with two sizes (D1, D2): (a)

Fig. 5. The equivalent flow resistance of
This alternative group is calculated on the right side of Ta-
ble 1, and plotted in the lower part of Fig. 3. Both DP

groups increase as the system size (N2) increases.

4. Channels with two diameters

Earlier constructal design studies [5,27] showed that one
strategy for improved global flow performance is to endow
the flow architecture with more freedom (for example,
more than one channel diameter), and to optimize the ratio
of the diameters of the channels that meet at a junction.
This opportunity for achieving better performance is well
known in the vascularization of living tissues, cf. the
Hess–Murray law [29,30] and the tree architectures derived
based on the constructal law.

In Fig. 4, we show the simplest example of how to install
channels with two diameters in a tree–tree structure that
covers a square domain with 4 � 4 elements. We know
from earlier work in constructal theory [3,4] that the thin-
ner channels (D1) should be placed in the canopy, and the
thicker (D2) in the stem and main branches. There are two
diagonal channels, (b) diagonal channels, (c) orthogonal channels.

the configuration shown in Fig. 4a.
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Table 2
Optimal designs of diagonal and orthogonal channels with two diameter size

N � N D1

D2

� �
opt

DP
Cd _m

V c

d

� �2
" #

min

DP
C _m

/2d3

� �
min

Diagonal channels
(Fig. 4a)

Diagonal channels
(Fig. 4b)

Orthogonal
channels

Diagonal channels
(Fig. 4a)

Diagonal channels
(Fig. 4b)

Orthogonal
channels

Diagonal channels
(Fig. 4a)

Diagonal channels
(Fig. 4b)

Orthogonal
channels

3 � 3 0.699 0.640 0.803 187.53 177.36 179.57 2.315 2.189 2.217
4 � 4 0.656 0.667 0.739 624.79 594.34 594.00 2.441 2.322 2.321
5 � 5 0.616 0.638 0.691 1525.3 1464.2 1460.2 2.440 2.343 2.336
6 � 6 0.580 0.608 0.653 3102.6 3012.6 3004.2 2.394 2.325 2.318
7 � 7 0.549 0.579 0.621 5595.2 5492.3 5488.6 2.330 2.288 2.286
8 � 8 0.524 0.554 0.595 9263.4 9181.3 9201.5 2.262 2.242 2.246
9 � 9 0.501 0.531 0.573 14,387 14,381 14,486 2.193 2.192 2.208
10 � 10 0.481 0.511 0.554 21,266 21,413 21,701 2.127 2.141 2.170
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Fig. 8. Tree–tree configurations with diagonal channels with three sizes
(D1, D2, D3): (a) diagonal channels and (b) diagonal channels.
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The diagonal design (Fig. 4a) was optimized by using
the method presented in Section 3. For every channel we
write the Poiseuille flow relation, Eq. (3), which shows that
the local flow resistance DP= _mi is proportional to the geo-
metric ratio Li=D4

i . For the sake of brevity, in the following
analysis we use only Li=D4

i for flow resistance, instead of
the full expression of Eq. (3). Fig. 5 shows the equivalent
Table 3
The optimal designs for trees with two and three channel sizes, based on Figs

N � N Two diameters Three d

D1

D2

� �
opt

DP 2

C _m
/2d3

� �
min

D1

D2

� �
op

3 � 3 0.699 2.315 0.806
4 � 4 0.656 2.441 0.736
5 � 5 0.616 2.440 0.676
6 � 6 0.580 2.394 0.627
7 � 7 0.549 2.330 0.587
8 � 8 0.524 2.262 0.554
9 � 9 0.501 2.193 0.526
10 � 10 0.481 2.127 0.503
flow resistance network corresponding to the configuration
of Fig. 4a. Next, we use the notation

D2
1 ¼ x; D2

2 ¼ y; a ¼ x
y

ð15Þ

The R4 and R7 resistances are in parallel and their com-
bined resistance R47 is

R47 ¼ x�2ð2�1 þ 2�1=2Þ�1d ð16Þ
The combined resistance of R3, R47 and R5 is R3�47�5 = R3 +
R47 + R5. This can be expressed in terms of x and a:

R3�47�5 ¼
d
x2

2a2 þ 1

2�1 þ 2�1=2

� �
¼ R3B ¼

d
x2

R3BB ð17Þ

Here, R3B is shorthand for R3�47�5, and R3BB is shorthand
for the quantity inside brackets in Eq. (17). The equivalent
resistance of R3B, R8, R2, R6 is

R3B�8�2�6 ¼
d
x2

2a2 þ 1

R�1
3BB þ 2�3=2

 !
¼ R4B ¼

d
x2

R4BB ð18Þ

Here, R4B is shorthand for R3B�8�2�6, and R4BB is short-
hand for the quantity inside brackets in Eq. (18). The total
resistance of the tree–tree network is

Rt;4 ¼ R1 þ
2

R4B

þ 1

R9

� ��1

þ R17

¼ d
x2

a2 þ 2

R4BB

þ 1

3 � 21=2

� ��1
" #

ð19Þ

The total channel volume constraint is

V c ¼
p
4

d ð4þ 9 � 21=2Þxþ 9y
� �

ð20Þ

or, in terms of x and a,

V c

d

� �2

¼ p
4

� �2

ð4þ 9 � 21=2Þ þ 9=a
� �2

x2 ð21Þ

By combining Eqs. (19) and (21), we find the global flow
resistance

DP
Cd _m

V c

d

� �2

¼ p
4

� �2

a2 þ 2

R4BB

þ 1

3 � 21=2

� ��1
" #

ð4þ 9 � 21=2Þ þ 9=a
� �2

ð22Þ
. 4a and 8a

iameters DP 2 � DP 3

DP 2

t

D1

D3

� �
opt

DP 3

C _m
/2d3

� �
min

0.587 2.036 0.121
0.523 2.151 0.119
0.477 2.186 0.104
0.442 2.179 0.089
0.414 2.149 0.078
0.391 2.109 0.068
0.372 2.063 0.059
0.355 2.015 0.053



Table 4
The optimal designs for trees with two and three channel sizes, based on Figs. 4b and 8b

N � N Two diameters Three diameters DP 2 � DP 3

DP 2D1

D2

� �
opt

DP 2

C _m
/2d3

� �
min

D1

D2

� �
opt

D1

D3

� �
opt

DP 3

C _m
/2d3

� �
min

3 � 3 0.640 2.189
4 � 4 0.667 2.322 0.755 0.557 2.139 0.079
5 � 5 0.638 2.343 0.703 0.505 2.138 0.087
6 � 6 0.608 2.325 0.659 0.467 2.132 0.083
7 � 7 0.579 2.288 0.621 0.437 2.115 0.076
8 � 8 0.554 2.242 0.588 0.413 2.089 0.068
9 � 9 0.531 2.192 0.560 0.393 2.058 0.061
10 � 10 0.511 2.141 0.536 0.376 2.024 0.055

Fig. 9. The minimized flow resistance and optimized ratios of channel
sizes for the configurations shown in Fig. 8a and Table 3.

Fig. 10. The minimized flow resistance and optimized ratios of channel
sizes for the configurations shown in Fig. 8b and Table 4.
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By minimizing this expression with respect to a, we obtain
the optimal ratio of diameters and the minimized flow
resistance

D1

D2

� �
opt

¼ 0:656 ð23Þ

DP
Cd _m

V c

d

� �2

¼ 624:79 ð24Þ
These results are reported in Table 2, which shows the min-
imized global DP and optimal D1/D2 for the diagonal and
orthogonal configurations defined in Fig. 4. The overall
system size increases from 3 � 3 to 10 � 10. The optimal
ratio D1/D2 is shown in Fig. 6. The diagonal and orthogo-



Fig. 11. Trees matched canopy to canopy with diagonal channels of one size, and loops (inscribed circles) of one size.

Table 5
Designs with diagonal channels having the same inscribed circle (d), and
one channel size (D)

H = L DP
Cd _m

V c

d

� �2 DP
C _m

/2d3

2.707d 129.28 2.408
4.121d 774.32 2.684
5.535d 2649.9 2.822
6.949d 6831.7 2.929
8.364d 14803 3.025
9.778d 28497 3.117

11.19d 50327 3.207
12.61d 83224 3.295
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nal designs have nearly the same (D1/D2)opt values, which
decrease in the same manner as the grid size increases.
Table 6
The optimal designs having the same inscribed (d) for trees with two and thre

H = L Two diameters Three d

D1

D2

� �
opt

DP 2

C _m
/2d3

� �
min

D1

D2

� �
op

2.707d 0.690 1.811
4.121d 0.717 2.037 0.805
5.535d 0.674 2.022 0.736
6.949d 0.632 1.959 0.679
8.364d 0.595 1.886 0.632
9.778d 0.564 1.814 0.593
11.19d 0.537 1.744 0.561
12.61d 0.514 1.680 0.533
Fig. 7 shows the corresponding minimized global resis-
tance vs. the size of the square domain N � N. The upper
graph shows the overall flow resistance reported as the
group ðDP=Cd _mÞðV c=dÞ2. The lower graph shows the cor-
responding DP results reported as w ¼ ðDP=C _mÞ/2d3. Both
presentations suggest that diagonal designs and orthogonal
design perform in nearly the same way. Systems larger than
7 � 7 are bathed almost as effectively by both designs.

Note the agreement between the present numerical
results and the analytical solution developed for orthogo-
nal channels with N� 1 in Ref. [27]. The analytical solu-
tion is indicated with solid line in Figs. 6 and 7. It serves
as asymptote for the numerical results for grids with
orthogonal channels, and anticipates closely the trend for
optimized grids with diagonal channels.
e channel sizes

iameters DP 2 � DP 3

DP 2

t

D1

D3

� �
opt

DP 3

C _m
/2d3

� �
min

0.586 1.842 0.096
0.523 1.835 0.092
0.478 1.802 0.080
0.444 1.757 0.068
0.416 1.707 0.059
0.394 1.656 0.050
0.375 1.605 0.045



Fig. 12. Trees matched canopy to canopy with diagonal channels of
multiple sizes, and loops (inscribed circles) of one size: (a) two diameters
(D1, D2), (b) three diameters (D1, D2, D3).
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5. Channels with three diameters

The next step in the direction of more design freedom
(hence higher global performance [5]) is to permit the chan-
nels to have three channel sizes, not two. The channel sizes
(D1, D2, D3) are indicated in Fig. 8 for grids with 4 � 4 ele-
ments. The difference between the channel arrangements is
the same as in Fig. 4a and b. To distribute the flow volume
optimally to these channels means to optimize two ratios,
D1/D2 and D1/D3. We performed this work for grids that
increase in size from 3 � 3 to 10 � 10. The method is the
same as in the preceding section, therefore the analytical
details omitted. Note that the 3 � 3 diagonal configuration
of the type shown in Fig. 8b cannot be constructed with
three different diameters.

The results are shown on the right side of Tables 3 and 4
by using the group w ¼ ðDP=C _mÞ/2d3. They indicate the
optimal distribution of channel sizes and the minimized
pressure drop. The left sides of the tables show the corre-
sponding designs and performance of trees with two chan-
nel sizes, which were seen in Table 2. The comparison of
the two classes of designs shows that the switch from two
to three channels sizes induces a reduction of 5–12% in
the overall flow resistance of the tree-to-tree construct.

This reduction is presented graphically in Figs. 9 and 10.
The reduction decreases gradually as N increases. Figs. 9
and 10 also show the behavior of the optimized channel size
ratios (D1/D2, D1/D3) as the system size increases. The two
ratios decrease at almost the same rate as N2 increases,
meaning that the third ratio that can be formed with the
three sizes (D2/D3) is nearly insensitive to N. Indeed, the
data of Tables 3 and 4 show that D2/D3 takes values in
the narrow range 0.73–0.7 when N increases from 3 to 10.

6. Loops with one size

In Fig. 1a, we saw that when diagonal channels pass
through the centers of the d � d square elements, the loops
are narrower than the spacing required by one crack length
scale (d). In this section we repeat the configurations and
performance of diagonal configurations that have the loop
width (d) distributed throughout the network. In other
words, we give the configuration of Fig. 1a more freedom
to morph, so that the channels are arranged as in Fig. 11.

In these new configurations, every loop is such that the
largest circle that can be inscribed in the loop has the crack
site diameter d.

In Fig. 11, we illustrate this new class of tree–tree config-
urations for three cases. The size of the inscribed circle (d)
does not vary as the system size increases. The margin left
around the vascularized area of the slab has the width d/2.

To make the comparison between the designs of Figs. 11
and 1a possible, in Fig. 11 we used channels with a single
diameter (D). The analytical method for calculating the
global DP for the configurations of Fig. 11 is the same as
in Section 3. The results are summarized in Table 5. The
corresponding results for the original diagonal designs
(Fig. 1a) are listed in Table 1. As noted above, the compar-
ison cannot be made with the previous designs because the
size of the N � N slab in Fig. 1a is not exactly the same as
the size of a comparable slab in Fig. 11.

This is why in Fig. 13 we plotted on the abscissa the
total area of the square slab (A), divided by the constant
d2. For example, the 3 � 3 slab of Fig. 2a is represented
by A/d2 = 9 on the abscissa of Fig. 13, whereas the corre-
sponding comparable slab of Fig. 11 (the lower left diago-
nal configuration with four inscribed circles) is represented
by A/d2 = 16.98.



Fig. 13. Summary of the global flow resistances of all the tree–tree designs developed in this paper.
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Next, we increased the freedom to morph the channel
sizes. In Table 6, we report the results of the optimal
designs having loops with one size (d) for trees with two
and three diameters. Fig. 12 shows two configurations with
four inscribed circles. The overall system size increases
from two inscribed circles (H = L = 2.707d) to 16 inscribed
circles (H = L = 12.61d). The analytical method is the
same as in Sections 4 and 5.

Fig. 13 shows how the dimensionless flow resistance
w ¼ ðDP=C _mÞ/2d3 varies with the system size A/d2 in all
the architectures presented in our paper. We see that when
the system size increases, the change in the flow architec-
ture from Figs. 1a–11 results in a reduction of 22–33% in
the global flow resistance and also the difference between
the two designs increases.

Table 6 and Fig. 13 show a better performance for flow
access compared with the designs of Fig. 11. The designs
with three diameters are superior to the designs with two
diameters. The relative difference decreases as the overall
system size increases. The optimal ratios of diameters
(D1/D2)opt for the designs with two diameters (Fig. 12a)
have values between the values of (D1/D2)opt and (D1/
D3)opt for the designs with three diameters (Fig. 12b). Fur-
thermore, the third ratio (D2/D3)opt is practically insensi-
tive to the system sizes. Table 6 shows that (D2/D3)opt

takes values in the narrow range 0.73–0.7 (as in Section
5) as the overall system size increases.
7. Conclusions

In this paper, we studied systematically the effect that
the freedom to morph the architecture has on the perfor-
mance of trees matched canopy to canopy for the vascular-
ization of smart materials with self-healing functionality.
Each tree–tree architecture bathes the material body volu-
metrically. The search for better flow configurations is
based on giving the flow system freedom to morph in sev-
eral directions: channel orientations (diagonal vs. orthogo-
nal), channel sizes (one, two, or three), and system sizes
ranging from 3 � 3 to 10 � 10 elemental volumes.

We reported optimal architectures for every class. We
showed that tree–tree configurations provide greater access
when diagonal channels are combined with orthogonal chan-
nels, and when there are multiple and optimized channel sizes.
Figs. 6, 9, 10 and 13 summarize the results for global flow resis-
tances and channels sizes for all the designs developed in this
paper. Better flow access is achieved with multiple and opti-
mized channel sizes. For designs with more than one channel
size, the relative difference between competing configurations
decreases when the overall system size increases.

Section 6 described an even more efficient channel
arrangement, where the loops of the network can catch
all the crack sites of size d. In this class, the diagonal archi-
tectures have the same loop width (d), and are compactly
arranged but not over designed.
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Related to these conclusions is the work described in
Ref. [31], where it was shown that an orthogonal tree with
several (and optimized) channel sizes performs better than
an orthogonal-with-loops design for collecting or supply-
ing flow to an area, i.e., that the non-uniform structure
provides greater overall flow access.
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